
Towards automated super-optimization
for Taichi using Equality Saturation

Deyuan (Mike) He
Department of Computer Science, Princeton University

Background

Term rewriting is extremely common in Compilers
(example manual rewrites from alg_simp.cpp):

a * 2 a << 1

a / pot a >> log2(pot)

a / const a * (1 / const)

2

Background

3

However, determining the order of applying rewrite rules is HARD!

M1

[N, M]

M2

[M, K]

M3

[K, P]

M4

[K, Q]

Background

4

M1 M2 M3* *

M1 M2 M4* *

1. Common Subexpression Elimination (CSE)
2. Associativity of Matrix Multiplication (Assoc)

Cost: 2NMK + NKP + NKQ multiplications

Background

5

M1 M2 M3* *

M1 M2 M4* *

M3*

M4*

M1 M2*M12
=

M12

M12

2NMK + NKP + NKQ multiplications NMK + NKP + NKQ multiplications

CSE Rewrite NMK

NKP

NKQ

Background

6

NMP + NMQ + MKP + MKQ multiplications

M1 M2 M3* *

M1 M2 M4* *

M1 M2 M3* *

M1 M2 M4* *

2NMK + NKP + NKQ multiplications

Assoc Rewrite
MKP

MKQ

NMP

NMQ

Background

7

Case 1 (Associativity better than CSE):
NMK + NKP + NKQ > NMP + NMQ + MKP + MKQ

e.g.
N = 2 M = 2 K = 8 P = 2 Q = 2

Before optimization: 128
⇒ CSE(96) > Assoc(80)

Background

8

Case 1 (CSE better than Associativity):
NMK + NKP + NKQ < NMP + NMQ + MKP + MKQ

e.g.
N = 2 M = 16 K = 4 P = 1 Q = 1

Before optimization: 544
⇒ CSE(144) < Assoc(192)

Background

9

Compilers may have hundreds of passes.

How to determine the order to ensure the product
program is Optimal (or close) ?

Background

10

Compilers may have hundreds of passes.

How to determine the order to ensure the product
program is Optimal (or close) ?

Interleaving Passes? Phase Ordering Problem?

Equality Saturation

11

Equality Saturation (EqSat) is a technique to solve this problem
by memoizing all the equivalences discovered by rewrite rules

Phase 1: Execute Rewrites

12

M1 * M2 * M3
M1 * M2 * M4

Associativity

M1 * M2 * M3
M1 * M2 * M4

M1 * (M2 * M3)
M1 * (M2 * M4)

Phase 1: Execute Rewrites

13

CSEM1 * M2 * M3
M1 * M2 * M4

M1 * (M2 * M3)
M1 * (M2 * M4)

M1 * M2 * M3
M1 * M2 * M4

M1 * (M2 * M3)
M1 * (M2 * M4)

M12⇐ M1 * M2
M12 * M3
M12 * M4

Phase 1: Execute Rewrites

14

Saturation: no more equivalence can be
found by applying the rewrite rules (in
any order)

This is the end of Phase 1

M1 * M2 * M3
M1 * M2 * M4

M1 * (M2 * M3)
M1 * (M2 * M4)

M12⇐ M1 * M2
M12 * M3
M12 * M4

Phase 2: Extraction

15

Extraction: select the optimal
term from the candidate set
using a cost model

E.g.: number of multiplications

M1 * M2 * M3
M1 * M2 * M4

M1 * (M2 * M3)
M1 * (M2 * M4)

M12⇐ M1 * M2
M12 * M3
M12 * M4

Phase 2: Extraction

16

Extraction: select the optimal
term from the candidate set
using a cost model

E.g.: number of multiplications

M1 * M2 * M3
M1 * M2 * M4

M1 * (M2 * M3)
M1 * (M2 * M4)

M12⇐ M1 * M2
M12 * M3
M12 * M4

Efficient Implementations?

egg: Fast, Extensible Equality Saturation on EGraphs

17

1. E-Classes (dashed boxes): A set of equivalent terms
2. E-Nodes (solid boxes): Operators, variables or literals

×

a 2 +

1Represents the term “2”

Represents the
term “1+1”

Rewrite Rules

18

Syntactic Rewrites: an initial pattern and a target pattern

×

a 2 +

1

Apply

Binds to ?x

Rewrite Rules

19

Syntactic Rewrites: an initial pattern and a target pattern

×

a 2 +

1

Apply

×

a 2 +

1

<<

Instantiate ?x << 1Binds to ?x

Rewrite Rules

20

Syntactic Rewrites: an initial pattern and a target pattern

×

a 2 +

1

Apply

×

a 2 +

1

<<

Binds to ?x Instantiate ?x << 1

E-Class Analysis

21

Rewrite rules are syntactic, meaning that it is not always valid in
terms of semantics

?x / ?x ⇒ 1 if ?x does not evaluate to 0

pow(2, ?x) ⇒ 1 << ?x if ?x is an integer

d(?c) ⇒ 0 if ?c is a constant

E-Class Analysis

22

E-Class Analysis: fully-customizable program analysis data
attached to EClasses. E.g. Type checking / inference

×

a 2 +

1

Checked_type: f32

Checked_type: f32 Checked_type: i32

Checked_type: i32Bottom-up initialization: parents (E-Node)
have access to children (E-Classes) analyses.

E-Class Analysis

23

E-Class Analysis enables conditional rewrites

×

a 2 +

1

Checked_type: f32

Checked_type: f32 Checked_type: i32

Checked_type: i32

?v × 2 ⇒ ?v << 1 if is_integer(?v)

is_integer(?v): Checks the E-Class analysis
matched to ?v whether it holds an integral value.

E-Class Analysis

24

E-Class Analysis enables conditional rewrites

×

a 2 +

1

Checked_type: f32

Checked_type: f32 Checked_type: i32

Checked_type: i32

?v × 2 ⇒ ?v << 1 if is_integer(?v)

is_integer(?v): Checks the E-Class analysis
matched to ?v whether it holds an integral value.

Since the E-Class matched to ?v has
Checked_type: f32, this rewrite rule won’t be fired.

E-Class Analysis

25

E-Class Analysis enables conditional rewrites

×

a 2 +

1

Checked_type: f32

Checked_type: f32 Checked_type: i32

Checked_type: i32

?v × 2 ⇒ ?v << 1 if is_integer(?v)

is_integer(?v): Checks the E-Class analysis
matched to ?v whether it holds an integral value.

Since the E-Class matched to ?v has
Checked_type: f32, this rewrite rule won’t be fired.

1. Observation: even there are rules that keep the EGraph from saturating1, we are
able to explore a large space of equivalences efficiently and automatically

2. Verifying individual rule guarantees soundness of their compositions2

3. Lower the difficulty of contributing optimization rewrites
4. Enable facilitating new backend by adding tiling / offloading rewrites

Benefits behind

261: This is the case for most applications because of expansive rules, e.g. ?x ⇒ transpose(transpose(?x))
2: we are focusing on functional rewrites so far

Extraction in egg

27

×

a 2 +

1

<< 10

1 0 5

0

1

Numbers in E-Nodes
are example costs

Extraction: Given a root E-Class, pick the “best” term
 (minimizing the sum of costs of E-Nodes given by a cost model)

Extraction in egg

28

×

a 2 +

1

<< 10

1 0 5

0

1

Numbers in E-Nodes
are example costs

Extraction: Given a root E-Class, pick the “best” term
 (minimizing the sum of costs of E-Nodes given by a cost model)

Extraction in egg

29

Implementations
- Greedy: Pick the minimum one at each level

- 😁 Easy to implement
- 😅 Don’t know about CSE (sharing)

- Integer Linear Programming (ILP)
- 😁 Sound minimum
- 😅 Timeout; does not work well with cycles

A CHI IR subset in egg

30

Thanks to egg’s extensibility, we are able to encode a (functional) subset of CHI IR in egg

We mostly focus on matrices: major workload

Full language definition is available here:
https://github.com/AD1024/egg-taichi/blo
b/main/src/language.rs

https://github.com/AD1024/egg-taichi/blob/main/src/language.rs
https://github.com/AD1024/egg-taichi/blob/main/src/language.rs

CHIAnalysis

31

DataType Analysis:
DType of the expression

Constant Info:
Option<ConstData>;
whether the expression
yields a constant

Representation Merging

DType1
Const1

DType2
Const2

promote_dtype(DType1, DType2)

pick_compare(Const1 ,Const2)

promote_dtype follows taichi’s typing rule
pick_compare chooses a Some value; if
both are Some variant, then compare them

Matrix/Vector Rewrites

Scalar Rewrites

Rewrites examples

32

(sadd ?x ?y) ⇒ (sadd ?y ?x)

(transpose (transpose ?x)) ⇒ ?x

(transpose (add ?x ?y)) ⇒ (add (transpose ?x) (transpose ?y))

(matmul ?x (matmul ?y ?z)) ⇒ (matmul (matmul ?x ?y) ?z))

(smult (sadd ?x ?y) ?z) ⇒ (sadd (smult ?x ?z) (smult ?y ?z))

(pow 2 ?x) ⇒ (bitshl 1 ?x) if is_integer(?x)

More Rewrites

33

Customized rewrites: Constant folding
(bear me with not using a macro for these :p)

More Rewrites

34

Enables us to check & use
analysis data, and then fire a
customized rewritten term.

E.g.: if we are folding +, then the
resulted term is a constant equal to
the sum of two constant data in the
E-Class analysis.

Full implementation:
https://github.com/AD1024/egg-taichi/blob/dd5c370395662c55b8d77c3ab601a365219835ce/
src/rewrites.rs#L34-L85

https://github.com/AD1024/egg-taichi/blob/dd5c370395662c55b8d77c3ab601a365219835ce/src/rewrites.rs#L34-L85
https://github.com/AD1024/egg-taichi/blob/dd5c370395662c55b8d77c3ab601a365219835ce/src/rewrites.rs#L34-L85

Cost Model

35

For proof-of-concept prototype, we implement a simple cost model

For scalar operations, we use an “estimated” CPU cycle count;
For matrix operations, we use the number of vector dots.

In the future, we will take vectorized instruction into consideration.
Probably use a more precise approach: profiling on the machine running the optimizer.

Implementation:
https://github.com/AD1024/egg-taichi/blob/main/src/extraction.rs

https://github.com/AD1024/egg-taichi/blob/main/src/extraction.rs

Preliminary Results

36

(cons
 (smult (sadd (smult i N) j) 2)
 (cons
 (sadd j (smult i (sadd N 1)))
 (cons
 (sadd 1 (sadd j (smult i (sadd N 1))))
 (sadd N (sadd 2 (sadd j (smult i (sadd N 1))))))))

We set the constant N to 16

Cost before optimization : 92

Preliminary Results

37

(cons
 (smult (sadd (smult i N) j) 2)
 (cons
 (sadd j (smult i (sadd N 1)))
 (cons
 (sadd 1 (sadd j (smult i (sadd N 1))))
 (sadd N (sadd 2 (sadd j (smult i (sadd N 1))))))))

Cost before optimization : 92

(cons
 (sadd (bitshl i 5) (bitshl j 1))
 (cons
 (sadd (bitshl i 4) (sadd i j))
 (cons
 (sadd (bitshl i 4) (sadd i (sadd j 1)))
 (sadd i (sadd (bitshl i 4) (sadd j 18))))))

We set the constant N to 16
Cost after optimization: 53

Preliminary Results

38

A Simple matrix multiplications / element-wise additions (MLP)

16×16 Linear
16×32

Linear
32×64

Linear
64×10

Preliminary Results

39

(ewadd
(matmul

(ewadd
(matmul

(ewadd
(matmul input W1)
b1)

W2)
b2)

W3)
b3)

Cost before optimization: 51361

(ewadd
(ewadd

(matmul
(ewadd

(matmul input W1)
b1)
(matmul W2 W3))

(matmul b2 W3))
 b3)

Cost after optimization: 44140

A Simple matrix multiplications / element-wise additions (MLP)

Discussion

40

1. egg only works well with data-flow based IR, but CHI IR has control flow operators
a. Encode Loops in terms of mathematical functions (Tate et al.)
b. Conversion from/to CFG

2. Global effects are hard to handle in egg’s representation
a. Focus on pure functions / procedures first
b. Proper effect handling transformations before converting into egg

3. Matrix operations representations in CHI IR

Q & A

41

